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Summary 

Modelling activity has a central role in studies on solid oxide cells allowing for a more concrete 
understanding of mechanisms and underlining the correlations among several factors which can 
influence the cell operation such as materials, geometry, microstructure and working conditions. Here 
model results provide a useful guide to improve cell behaviour in order to make this technology 
competitive for long-lasting applications as both power plant and energy storage unit. In the framework 
of AD ASTRA project different approaches have been proposed as performance and lifetime models 
consisting in lumped-parameter models, high level physics-based models, statistic models and signal-
based learning model. They can be successfully used for different purposes as listed below: 

• cell operation analysis in view of specific kinetics occurred in each electrode; 

• cell performance prediction at nominal state and during operation; 

• degradation accelerating factor identification and transfer functions for their correlation to cell 
operation; 

• cell prognosis in term of Remaining Useful Life (RUL). 

Key words: Solid oxide cell, Multiscale modelling, Performance prediction, Remaining useful life, 

Degradation functions, Transfer functions. 
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Introduction 

Modelling activity has a central role in studies on solid oxide cells allowing for a more concrete 
understanding of mechanisms and underlining the correlations among several factors which 
influence the cell operation such as materials, geometry, microstructure and working conditions. 
Here model results provide a useful guide to improve cell behaviour in order to make this technology 
competitive for long-lasting applications as both power plant and energy storage unit. In the 
framework of AD ASTRA project, different approaches have been proposed as performance and 
lifetime models to simulate how the cells work during durability and accelerated stress tests. Indeed, 
both empirical and physics-based degradation functions have been introduced deriving them from 
experimental observations, specific high-level and grey-box degradation models. Remaining Useful 
Life (RUL) can be predicted in order to organise properly maintenance before a complete irreversible 
failure of cells. Moreover, degradation accelerating factors have been also correlated to cell 
operation through specific transfer functions aiming at the detection of parameters which mainly 
cause the worsening of performance.  
Following sections present a detailed description of models developed within AD ASTRA consortium. 
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I. Local level models for cell kinetics analysis and degradation (CEA) 

Main CEA task consisted in developing micro-scale models to study the Ni-YSZ and LSCF electrode 
kinetics and degradation, which represent the state-of-art materials for solid oxide cells.  
 

I.1 Developments for the Ni-YSZ fuel electrode 

Electrochemical modelling to study the impact of Ni coarsening and migration 

A model-based double-hydrogen spillover mechanism has been chosen and implemented in a Finite 

Element code in order to analyse the Ni coarsening and migration arising upon operation. The global 

reaction pathway for this particular model is depicted in Figure I.1, while the reactions and their 

kinetic rates are listed in Table I.1. The details for all the governing equations can be found in 

reference [1].  

 

Figure I.1 Elementary reactions taken into account in 
the fuel electrode kinetic model to analyse the impact 

of Ni coarsening and migration. 

 

Table I.1 Elementary electrochemical reactions considered in the microscale model for Ni-YSZ fuel electrode. 

Reaction Kinetics 
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⇄
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des
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ref
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des
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It is worth noting that the model was validated on specific electrochemical measurements performed 

on the Ni-YSZ cermet of the SOLIDpower cell [1]. To reduce the number of unknown parameters for 

the simulations, the real microstructural properties of the tested cermet have been deduced from a 

3D electrode reconstruction obtained by synchrotron X- ray nano-holotomography. It has been 

shown that the model based on the hydrogen spillover mechanism is able to correctly predict the 

electrode response in terms of impedance spectra and polarization curves obtained at different gas 

compositions (Figure I.2). Once validated, the model based on the hydrogen spillover mechanism 

has been used to clarify the reaction pathway for the Ni-3YSZ electrode. The analysis of the 
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simulated impedance diagrams at Open Circuit Potential (OCP) has confirmed that the rate 

determining steps are (i) the charge transfer at TPBls, (ii) the oxygen vacancies migration in YSZ 

network and (iii) a pure chemical surface process. Moreover, the simulations under polarizations 

have highlighted a change of reaction pathway from cathodic to anodic polarization. 

 

Figure I.2 Experimental and simulated impedance 
spectra at OCP with different pH2/pH2O: Nyquist (a) and 
Bode (b) plots with pH2/pH2O = 50/50 – Nyquist (c) and 
Bode (d) plots with pH2/pH2O = 40/60 – Nyquist (e) and 
Bode (f) plots with pH2/pH2O = 60/40 [1]. 

Once validated, the model was used to study the impact of Ni coarsening and migration using 

SOLIDpower cells. All the results are detailed in reference [2]. In this study, the hydrogen electrodes 

of pristine and aged cells have also been reconstructed by synchrotron X-ray holotomography. 

Thanks to the large volume of the 3D images, the Ni-YSZ microstructural evolutions have been 

investigated in the bulk and at the electrode/electrolyte interface. The quantification of the 

microstructural properties in the bulk has revealed a Ni particle growth for all the operated samples. 

This phenomenon of agglomeration was found to be independent of the polarization. The 

microstructural evolutions have been introduced in the model to quantify the impact of the Ni 

agglomeration on the electrode and cell performances. Thanks to the data extracted from the longest 

experimental dataset, the effects of the Ni agglomeration have been extrapolated up to 20,000 hours 

with a good level of confidence (Figure I.3). As expected, the contribution of the agglomeration on 

the cell degradation is significant but tends to slow down for very long-term operation. 

 
 

Figure I.3 Effects of the hydrogen electrode microstructural evolution on the electrode and cell performances: Increase 
of the Ni mean particle diameter associated to the Ni agglomeration (a) – Effect of the Ni agglomeration on the density 
of TPBls (b) – Simulated voltage caused by Ni agglomeration at 750 °C and 850 °C drop assuming cell operation at 750 
°C and -0.5 A.cm-2 for this comparison (c) [2]. 
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The analyses of the 3D electrode reconstructions have also revealed a Ni migration toward the bulk 

of the electrodes resulting in Ni depletion at the electrode/electrolyte interfaces for the cells operated 

in electrolysis mode. As for the agglomeration, the gradients in microstructure parameters due to the 

loss of Ni at the electrode/electrolyte interface have been implemented in the model. The effect of 

the Ni depletion on the polarisation curve and impedance spectra have been also computed and 

discussed. It has been shown that the Ni depletion can represent a large part of the degradation in 

electrolysis mode. 

Mechanical modelling to study the impact of Ni re-oxidation 

An original model based on the phase field approach has been developed to study the local fracture 

in porous electrodes of Solid Oxide Cells (SOCs). First, the model capacity to predict the crack 

nucleation and propagation has been studied with theoretical considerations which are detailed in 

reference [3]. Then, the model was validated thanks to performed specific micro-compression tests. 

It has been found that the model is able to simulate accurately the YSZ compressive fracture strength 

as a function of porosity (Figure I.4). Moreover, it has been shown that the model is able to capture 

and explain the transition from a brittle behavior towards a diffuse damage when increasing the 

porosity [3]. 

 

Figure I.4 Comparison between the calculated 
compressive fracture strength and the experimental 
data as a function of porosity, where l is the 
regularization parameter in the phase-field simulation. 

 

After its validation, the model has been used to study the impact of Ni re-oxidation [4,5]. As expected, 

it has been found that the Ni swelling during the Ni-NiO transformation induces a mechanical damage 

in the YSZ backbone of the electrode (Figure I.5). It has been found that the micro-cracks are 

generated into the YSZ ligaments surrounded by Ni with specific morphological characteristics and 

submitted to high tensile stresses during the re-oxidation. In addition, the comparison between the 

investigated microstructures of two typical cermet supports (Ni-3YSZ and Ni-8YSZ) has confirmed 

the crucial role of the YSZ backbone (Figure I.5). Indeed, the local fracture of the YSZ skeleton and 

the number of the created micro-cracks are strongly dependent on the fracture properties of the 

ceramic. As expected, it has been found that the Ni-3YSZ cermet has a higher redox tolerance with 

respect to Ni-8YSZ. Moreover, it has been also shown that the microstructural properties of the 

cermet can also play a role on the cermet mechanical stability. As observed during experiments, the 

microstructure with higher porosity and smaller Ni particles provides higher mechanical stability upon 

the Ni re-oxidation with the formation of less micro-cracks [5]. 
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Figure I.5 Finite Element meshes of the simulated solid 
phases in the Ni-YSZ volumes of 5x5x5 µm3: (a) Ni-8YSZ, 
and (c) Ni-3YSZ. Micro-cracks simulated with the model 
during re-oxidation in (b) Ni-8YSZ and (d) Ni-3YSZ [5]. 

 

I.2 Developments for the LSCF air electrode 

An elementary kinetic model has been also developed to study the impact of the LSCF 

decomposition on electrode performances. The two reaction pathways implemented in the model 

are shown in Figure I.6. The associated reactions and their kinetic rates are provided in Table I.2. 

The details for all the governing equations can be found in reference [6].  

 

Figure I.6 Elementary reactions taken into account in the air 
electrode kinetic model to analyse the impact of LSCF 
demixing [6]. 

  

Table I.2 Reactions and expressions of the kinetic rates for LSCF air electrode. 

Reaction Kinetics 

 
R1 𝑂𝑜

𝑥(𝐶𝐺𝑂) + 𝑉𝑜
⦁⦁(𝐿𝑆𝐶𝐹)

𝑘+

 ↔
𝑘–

 𝑂𝑜
𝑥(𝐿𝑆𝐶𝐹) + 𝑉𝑜

⦁⦁(𝐶𝐺𝑂) 

 

𝜈(1) =  𝑆𝑝
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𝑜𝑥 𝐹𝐸
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𝐶𝑉𝑜
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𝑥
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𝐶𝑂𝑜
𝑥

𝑚𝑎𝑥 − 𝐶𝑉𝑜
∙∙

𝐶𝑂𝑜
𝑥

𝑚𝑎𝑥 )} 
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𝜈(2) = 𝑆𝑝
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𝑇𝑃𝐵𝑙𝑠 𝑒𝑥𝑝 (

𝛼(3)
𝑜𝑥 𝐹𝐸

𝑅𝑇
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R4 
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𝛤𝜃𝑠𝐿𝑆𝐶𝐹
} 
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The model was validated thanks to experiments performed on symmetrical cells using a three-
electrode setup. After the model calibration on polarization curves, it has been shown that the model 
is able to simulate accurately the experimental impedance diagram at OCP and under polarization 
without additional fitting. Moreover, the evolution of the electrode polarization resistance with the 
oxygen partial pressure is well reproduced by the model. The electrode reaction mechanism was 
thoroughly analysed depending on the electrode polarisation mode in SOFC and SOEC [6]. 
The impact of the perovskite decomposition on the LSCF electrode response has been studied with 
the model at OCP and under anodic and cathodic dc currents [6]. The surface passivation and the 
loss of ionic conductivity have been simulated by decreasing the specific surface area and the 
chemical diffusivity, respectively (Figure I.7). At OCV, the impact of the demixing on the evolution of 
the impedance spectra has been discussed. It has been shown that the passivation affects the 
contribution at low frequency in the Gerisher-type element, while the loss of ionic conductivity 
enlarges the contribution at intermediate frequency.  
It has been stated that the surface passivation is more affecting the electrode response when the 
performances are evaluated under electrolysis mode. On the contrary, the electrode polarization 
resistance is more sensitive to the decrease of ionic conductivity when the response is evaluated in 
fuel cell mode. Finally, whatever the conditions, it appears that the surface passivation would be 
more impacting than the decrease of the ionic conductivity. Moreover, the sum of the degradation 
induced by the two phenomena is higher when the electrode response is computed in anodic 
polarization. Therefore, the LSCF decomposition would be more detrimental for the electrode 
performances in electrolysis mode. 
 

 

Figure I.7 Sensitivity analysis on the surface passivation and on the loss of ionic conductivity at 750 °C under air at 
OCP: Nyquist and Bode plots evolution (a) and (b) for the surface passivation, (c) and (d) for the loss of ionic conductivity, 
respectively. Evolution of the polarization resistance with the decrease of (e) the specific surface area and of (f) the 
chemical diffusivity. 

The model was finally extended and validated to simulate the LSCF cyclic voltammetry response 

[7,8]. It has been also shown that the voltammograms are strongly distorted by the Ohmic losses 

making their interpretation impossible in practice under the classical operating conditions of the solid 

oxide cells. To overcome this limitation, a methodology based on our modelling approach has been 

proposed to remove the Ohmic losses from the voltammograms and hence to reveal the voltammetry 

peaks. Thanks to this procedure, the impact of the LSCF decomposition on the cyclic voltammetry 

response has been estimated with model. It has been established that the surface passivation and 

the decrease of the chemical diffusivity can substantially affect the shape of the voltammograms. 

Therefore, the cyclic voltammetry could be seen as a relevant alternative method to characterize the 

electrode degradation.  
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II. Multiscale models for cell performance and degradation rate prediction (UNIGE) 

UNIGE task consisted in developing and validating an effective model for solid oxide cell 

performance and durability as a function of working and microstructure parameters, following 

physics-based principles. In view of the complexity of studied systems and the overlapping of 

different phenomena, a multiscale approach was applied. This allowed the choice of the most 

suitable tool depending on cell scale and desired level of analysis details, reducing at the same time 

the computation efforts to make it competitive with other available commercial software for cell 

simulation. SIMFC/SIMEC (SIMulation of Fuel Cells and Electrolysis Cells) can evaluate solid oxide 

cell operation in both fuel cell and electrolysis mode, starting from a 0D in home-built Fortran model 

executed in the process simulation software Aspen Plus to a higher-level in home-built Fortran model 

which analyses local phenomena on cell plane as well as interactions between stacked planar units 

[1]. Through the validation with experimental results, SIMFC/SIMEC was tuned at nominal state (i.e., 

at time equal to zero) by underlining the influence of working conditions on electrochemical 

performance in term of voltage and power which are the most descriptive cell outlets. Note the 

knowledge of the initial state-of-health is a fundamental step preliminary to any following study on 

degradation. Then specific degradation functions were implemented deriving them both empirically 

from electrochemical characterization data through a macroscale approach and by referring to 

specific microstructure changes through a microscale analysis. Here the result is a model able to 

estimate the Remaining Useful Life (RUL) in relation to a defined cell operation profile, also predicting 

the time evolution of main physicochemical features. Followed steps are schematised in Figure II.1 

and they are discussed into details in subsequent sections. 

 

 

Figure II.1 UNIGE activity performed steps from nominal cell characterization to RUL estimation through SIMFC/SIMEC. 

Looking at the followed methodology, SIMFC/SIMEC is a physics-based model to predict cell 

performance solving conservation equations (i.e., material, charge, momentum and energy 

balances) on single cell or stack in case of a lumped parameter approach and in each specific sub-

unit resulting from single cell plane discretization through a local level analysis. However, the key-

point is the electrochemical kinetics which allows the simulation of both fuel cell and electrolysis 

operation just setting the current density direction without changing equations and parameters, 

differently from reference studies [2,3,4]. Following electrochemistry basic principles, the cell voltage 

derives from Nernst equilibrium value algebraically adding the polarization terms. The model 

considers a Fickian type diffusion as gas transport mechanism inside electrodes, a reaction rate 

according to Butler-Volmer equation and a thermal activated process for the ion and electron 

transfer. Main formulas are reported in Table II.1 (refer to authors’ works if interested in kinetics 

complete description [5,6]). In such equations the degradation functions were introduced to evaluate 

the voltage variation along system operation. According to a macroscale approach, global cell 

degradation was computed by introducing further overpotential terms derived empirically from the 

time evolution of EIS spectra and characteristic curve slope. Whereas, focusing on different layers 

of the cell, more specific equations were considered to correlate the processes observed 

experimentally with microstructural and consequent kinetic parameter changes.  
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Table II.1 Kinetics formulation for solid oxide cell operation as both fuel cell and electrolyser. 

Cell voltage 𝑉𝑆𝑂𝐶 = 𝐸𝑒𝑞 ∓ 𝑉𝑜h𝑚 ∓ 𝑉𝑎𝑐𝑡 ∓ 𝑉𝑑𝑖𝑓𝑓  

Equilibrium voltage 𝐸𝑒𝑞 = 𝐸0(𝑇) +
𝑅𝑇

𝑧𝐹
ln (

𝑝𝐻2
𝑝𝑂2

0.5

𝑝𝐻2𝑂
) 

Ohmic overpotential 𝑉𝑜h𝑚 = ∑
𝛿

𝜎
𝐽 = 𝛾𝑜ℎ𝑚𝑇exp

(
𝐸𝑎𝑐𝑡,𝑜ℎ𝑚

𝑅𝑇
)
𝐽 

Activation overpotential 

𝑉𝑎𝑐𝑡 =
2𝑅𝑇

𝑧𝐹
sinh−1 |

𝐽

2𝐽0
|  where 

𝐽0,𝑓𝑢𝑒𝑙 = 𝛾𝑓𝑢𝑒𝑙(𝑦𝐻2
)𝐴(𝑦𝐻2𝑂)𝐵exp

−(
𝐸𝑎𝑐𝑡,𝑓𝑢𝑒𝑙

𝑅𝑇
)
 

𝐽0,𝑎𝑖𝑟 = 𝛾𝑎𝑖𝑟(𝑦𝑂2
)𝐶exp

−(
𝐸𝑎𝑐𝑡,𝑎𝑖𝑟

𝑅𝑇
)
 

Diffusion overpotential 

𝑉𝑑𝑖𝑓𝑓,𝑓𝑢𝑒𝑙 = 
𝑅𝑇

𝑧𝐹
ln {

[1±
𝑅𝑇𝐽

𝑧𝐹𝑝𝐻2𝑂
(

𝛿𝑠𝑢𝑝

𝐷𝐻2𝑂_𝑠𝑢𝑝
+

𝛿𝑎𝑐𝑡
3𝐷𝐻2𝑂_𝑎𝑐𝑡

)]

2𝐵

[1∓
𝑅𝑇𝐽

𝑧𝐹𝑝𝐻2
(

𝛿𝑠𝑢𝑝

𝐷𝐻2_𝑠𝑢𝑝
+

𝛿𝑎𝑐𝑡
3𝐷𝐻2_𝑎𝑐𝑡

)]
2𝐴 } 

𝑉𝑑𝑖𝑓𝑓,𝑎𝑖𝑟 = 
2𝑅𝑇𝐶

𝑧𝐹
ln [

𝑝𝑂2𝜃𝑂2

𝑝−(𝑝−𝑝𝑂2𝜃𝑂2) exp(±
𝜃𝑂2

𝑅𝑇𝛿𝑎𝑖𝑟𝐽

𝑧𝐹𝑝𝐷𝑂2
)

] 

 

List of symbols: A, B, C = Kinetic order, D = Diffusion coefficient, E0 = Reversible 
voltage, Eeq = OCV voltage, Eact = Activation energy (fuel = H2 electrode, air = O2 
electrode), F = Faraday constant, J = Current density, J0 = Exchange current density, 
p = Pressure, R = Ideal gas constant, T = Temperature, V = Cell voltage-overpotential, 
y = Molar fraction, z = Number of transferred electrons, γ = Pre-exponential coefficient, 
δ = Electrode thickness (act = active layer, sup = support), θ = Diffusivity ratio 
coefficient. 
 

 

Followed sections illustrate the requested steps to build and tune SIMFC/SIMEC, discussing some 

of more indicative case studies developed during AD ASTRA project. 

II.1 State-of-Health characterization 

Before analysing possible degradation mechanisms, it was fundamental to tune the model on the 

reference performance of two commercial cells tested within AD ASTRA consortium, adapting the 

kinetics formulation to consider specific used material features and structures. Both Anode 

Supported Cell (ASC) consisting in Ni-YSZ/YSZ/LSCF-CGO and Electrolyte Supported Cell (ESC) 

consisting in Ni-CGO/YSZ/LSCF-CGO were studied thanks to DTU collaboration, which provided a 

detailed experimental dataset for fuel cell behaviour at variable temperatures, loads, fuel and oxidant 

compositions. Electrochemical characterization including EIS spectra and DRT analysis was 

performed to identify specific frequencies for each resistance and here to derive the main kinetic 

parameters requested into the model, such as activation energies and reactant kinetic orders. After 

reaching an average relative error lower than 1-2 % as model validation, 2D simulation by 

SIMFC/SIMEC allowed for underlining cell operation differences looking at global performance [7] 
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as well as current density and consequent overpotential spatial evolutions on the cell plane through 

a local level analysis [8]. As preliminary observations at 1073 K and variable feeds (Figure II.2), a 

lower slope of characteristic curves is visible in ASC which results to be about a third of ESC case 

in view of its thicker electrolyte used as a support (i.e., higher internal resistance). ESC profiles are 

quite linear suggesting the main weight of the ohmic overpotential, whereas in ASC a different trend 

is underlined above all at low current densities where the quite rapid voltage decrease highlights 

also effects of activation term.  

 

 

Figure II.2 ASC (a) vs. ESC (b) characteristic curves at 1073 K at variable reactant volumetric compositions according to 

experimental and SIMFC/SIMEC results. 

Different cell contributions were evaluated dividing the total overpotential into ohmic, activation and 

diffusion term as a function of the working point. As expected the ohmic overpotential has the main 

role in the ESC configuration with a weight >80 %. Whereas the activation polarization is more 

significant in ASC case, where it can reach also the ~60 % under a dry anodic feed (4 %vol of steam). 

In view of specific fuel electrode materials, Ni-CGO anode shows a lower activation overpotentials 

since the reaction occurs also at double phase boundary sites [9]. On the contrary, in the Ni-YSZ 

configuration the electrochemical reaction is limited to the triple phase boundary points into the 

functional layer. In both configurations steam content favours the kinetics reducing the activation 

overpotential, since it favours Ni-YSZ surface processes [10] and has an autocatalytic effect 

accelerating hydrogen oxidation in Ni-CGO [11]. Looking at oxidant influence, a pure oxygen inlet 

stream causes a reduction of only one percentage point compared to air case in both designs 

confirming a lower dependence. Since all chosen working conditions avoid high fuel utilizations, the 

weight of diffusion overpotential is always minimum, above all in ESC due to the thin anode. Focusing 

now on a specific working point to evaluate local performance, it was assumed an electric load of 

0.3 A cm-2 and a feed composition of 80/20 %vol H2/H2O for the fuel and dry air at 1073 K which 

results in a voltage of 0.931 V and 0.818 V in case of ASC and ESC respectively. For instance, 

Figure II.3 shows maps of ESC ohmic and ASC fuel activation overpotentials representing the main 

losses for each of these designs respectively. Working under co-flow fuel feeding, electrochemical 

processes go forward along the flow direction resulting in higher detected resistances at the inlet, 

where the reaction is faster, in both maps. A significant gradient between inlet and outlet area is 

highlighted, above all considering ASC anodic activation overpotentials due to the increasing water 
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content along the flow direction which reduces the polarization losses. ESC ohmic contribution is 

characterised by a minor gradient assuming an isothermal behaviour in view of small cell scale (4x4 

cm2).  

 

        

 

Figure II.3 Fuel cell local performance feeding 80/20 %vol H2/H2O mixture and dry air at 1073 K and 0.3 A cm-2 in terms of 

ASC activation overpotential at fuel electrode (a) and ESC ohmic overpotential of global cell (b).  

 

II.2 Degradation function introduction 

A multiscale approach was followed to identify the degradation functions depending on the available 

information. At macroscale, empirical equations were derived by analysing EIS spectra and 

characteristic curves measured at different times during cell testing, which were introduced as further 

time dependent overpotential terms distinguishing between the increase of ohmic and polarization 

(i.e., activation and diffusion) contributions (Equation II.1). The first was evaluated knowing the time 

profile of internal resistance from EIS spectra, whereas the second considered the punctual variation 

of the differential resistance for available characteristic curves. Here, the degradation loss 

formulations, Vdeg, were detected as a function of current density J and time t. 

𝑉𝑆𝑂𝐶 = 𝐸𝑒𝑞 ∓ 𝑉𝑜ℎ𝑚 ∓ 𝑉𝑎𝑐𝑡 ∓ 𝑉𝑑𝑖𝑓𝑓 ∓ 𝑉𝑑𝑒𝑔,𝑜ℎ𝑚(𝑡, 𝐽) ∓ 𝑉𝑑𝑒𝑔,𝑝𝑜𝑙(𝑡, 𝐽) (II.1) 

When a more detailed characterisation was performed, degradation functions were directly 

introduced in formulated overpotential terms (Table II.1), expressing different kinetic parameters 

dependent on time. In view of the significant correlations between polarization losses and the 

operation point, more complex experimental tests had to be performed to evaluate the kinetics 

evolution as a function of both time and working conditions, so also requiring ex-situ tests on specific 

components of the cell. For instance, looking at cathodic coated interconnect, some empirical 

correlations were detected for the pre-exponential coefficient γohm and the activation energy, Eact,ohm, 

of its ohmic overpotential (Equation II.2). These were obtained both monitoring the area specific 

resistance during durability tests of interconnect samples as well as through cooling ramps at 

different ageing times in view of the significant thermal dependence [12].  

𝑉𝑜ℎ𝑚(𝑡) = 𝛾𝑜ℎ𝑚(𝑡)exp
[
𝐸𝑎𝑐𝑡,𝑜ℎ𝑚(𝑡)

𝑅𝑇
]
𝐽 (II.2) 

Finally, at lower-level analysis the microstructural changes were correlated to kinetic parameters to 

simulate the specific degradation of each layer. In view of the significant weight of Ni-based electrode 

degradation on global cell performance, the percolation theory was introduced into SIMFC/SIMEC 

Gas feed 

a) b) 

ASC Anodic activation 

overpotential at 0 h [mV] 

ESC Ohmic overpotential 

at 0 h [mV] 



   
 

15 
 

kinetics to express overpotential parameters as a function of particle radius and phase fraction (Table 

II.2). The Ni-cermet layer is modelled as a binary system with a random packaging of spheres 

corresponding to metal and ceramic particles combined to form the percolated cluster. Electrode 

ohmic resistance depends on thickness and conductivity calculated as the sum of Ni and ceramic 

contributions knowing the conductivity of the dense solid material, σ0, and the threshold solid phase 

fraction, Ψt. Whereas the exchange current density, J0, in the activation overpotential depends on 

Triple Phase Boundary (TPB) length, 𝑙TPB
eff , computed considering the available exchange area 

among phases as well as the probability to belong a percolated cluster.  

Table II.2 Percolation theory formulation into SIMFC/SIMEC electrochemical kinetics to consider Ni-YSZ electrode 

dependences on microstructural parameters. 

Kinetics term Physicochemical feature 

For ohmic overpotential 

𝑉𝑜ℎ𝑚,𝑓𝑢𝑒𝑙 =
𝛿𝑓𝑢𝑒𝑙

𝜎𝑁𝑖
𝑒𝑓𝑓

+ 𝜎𝑌𝑆𝑍
𝑒𝑓𝑓

𝐽 

𝜎𝑖
𝑒𝑓𝑓

= 𝜎𝑖,0(1 − )2 [
𝛹𝑖 − 𝛹𝑖

𝑡

1 − 𝛹𝑖
𝑡(1 − )

]

2

 

𝛹𝑖
𝑡 =

1.764𝑟𝑖

(𝑍†̅̅ ̅ − 1.764)𝑟𝑗 + 1.764𝑟𝑖

 

𝜎𝑁𝑖,0[𝑆𝑚−1] = 3.27 × 106 − 1065.3𝑇[𝐾] 

𝜎𝑌𝑆𝑍,0[𝑆𝑚−1] = 6.24 × 104exp
−( 

10,300

𝑇[𝐾]
)
 

For activation overpotential 

𝐽0,𝑓𝑢𝑒𝑙 = 𝛾𝑓𝑢𝑒𝑙
′ 𝑙𝑇𝑃𝐵

𝑒𝑓𝑓
𝑦𝐻2

𝐴 𝑦𝐻2𝑂
𝐵 𝑒𝑥𝑝

−(
𝐸𝑎𝑐𝑡,𝑓𝑢𝑒𝑙

𝑅𝑇
)
 

𝑙𝑇𝑃𝐵
𝑒𝑓𝑓

=
3(1 − )𝛹𝑁𝑖

4𝑟𝑁𝑖
3 [sin (

𝜋

12
) min(𝑟𝑁𝑖, 𝑟𝑌𝑆𝑍)]

(1 +
𝑟𝑁𝑖

2

𝑟𝑌𝑆𝑍
2 ) 𝛹𝑌𝑆𝑍𝑟𝑁𝑖𝑍

†̅̅ ̅

𝛹𝑌𝑆𝑍𝑟𝑁𝑖 + 𝛹𝑁𝑖𝑟𝑌𝑆𝑍

𝑝𝑁𝑖𝑝𝑌𝑆𝑍 

𝑝𝑖 = [1 − (
4.236 − 𝑍†

𝑖,𝑖

2.472
)

2.5

]

0.4

 

List of symbols: A, B = Kinetic order, Eact = Activation energy, J = Current density, J0 = Exchange 

current density, lTPB = TPB length, p = Percolated network probability, R = Ideal gas constant, r = 

Radius, T = Temperature, V = Overpotential, y = Molar fraction, γ’ = Pre-exponential coefficient, 𝑍†= 

Coordination number, δ = Electrode thickness, ε = Porosity, σ = Conductivity, 𝛹 = Solid phase fraction, 

𝛹𝑡 = Threshold solid phase fraction. 

 

II.3 Degradation rate evolution 

According to introduced degradation functions, devoted case-studies are here discussed to 

underline SIMFC/SIMEC prospective uses. All requested experimental data for model tunning were 

shared within AD ASTRA consortium. Note different information can be deduced depending on the 

level of analysis. At macroscale, empirical correlations allow the simulation of voltage time variation 

after relatively few experimental measurements, but only preliminary assumptions on occurring 

degradation mechanisms can be supposed. On the other hand, the local level analysis correlates 

voltage losses to specific degradation sources by evaluating kinetic parameter dependences on 

microstructure. Nevertheless, in this second case the performance simulation is more difficult 
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requiring many experimental data on material structure changes. Here, pictures of cell behaviour at 

cadenced instances are more feasible, instead of the working time complete profile. 

As the durability index, the percentage Degradation Rate, DR%, is commonly used representing how 

the cell voltage varies during the time. It is calculated as the absolute difference between the voltage 

at generic time, Vt, and its initial value (at the test start or at the beginning of considered interval), 

V0, normalized with respect to V0 and over the time step duration, t. It is typically expressed as 

percent change per 1000 hours (Equation II.3). 

𝐷𝑅% = |
𝑉t − 𝑉0

𝑉0

|
1000

𝑡
 100 % (II.3) 

The validation of macroscale approach was performed on data referred to a small-scale anode 

supported fuel cell consisting in Ni/YSZ/YSZ/LSCG-CGO, which worked in galvanostatic mode for 

more than 9000 hours feeding dry hydrogen and ait at 1023 K [13]. A good match was obtained by 

comparing simulated and experimental values for voltage evolution as well as characteristic curves 

(relative error lower than 2 %), as shown in Figure II.4. In this test DR% is equal to -0.8 V% kh−1 

characterised by a faster reduction in the first 2000 h (DR% equal to -1.2 V% kh−1) and a followed 

lower one (DR% equal to -0.5 V% kh−1). The degradation is mainly due to the increase of ohmic loss 

which changes of ~50 mV (46 % increase) at the reference working condition of 0.5 A cm-2. 

 

 

Figure II.4 Model validation looking at durability tests under 0.5 A cm-2 (a) and characteristic curves at different operation 

hours (b) feeding dry hydrogen and air at 1023 K. 

If the previous approach is useful for cell control under operation requiring just electrochemical 

characterization measurements for model tunning, the study of each layer degradation is not easy 
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in full cell performance analysis in view of possible concurrent effects. Here, the model was used to 

evaluate the weight of a specific degradation process on global system behaviour basing on ex-situ 

tests of single layers. As example, referring to previously shown equation on aged cathodic coated 

interconnects (Equation II.2), the influence of CuMnO/AISI441 on a commercial scale anode 

supported fuel cell was studied under co-flow feeding adiabatic conditions [12]. Initial state-of-health 

characterization as discussed in Section II.1 was used to predict cell reference performance [8], 

whereas the degradation function for coated interconnect derived from ex-situ tests carried out by 

DCCI-UNIGE. Imposing a galvanostatic operation for 400 hours and 1023 K as the inlet temperature, 

the correspondent DR% values were computed for different loads between 40 h and 400 h when the 

best and the worst voltage values were detected in view of the sample initial contact improvement. 

In agreement with ohmic law (Table II.2), the resistance worsens at current density increase (Figure 

II.5-a). Anodic feed also shows a significant influence, despite the interconnect ohmic resistance 

does not depend on gas composition. The DR% is around 8 time higher using a biogas as fuel instead 

of a wet hydrogen mixture due to different cell thermal behaviour. Indeed, under direct internal 

reforming operation there is a significant temperature drop at the inlet (Figure II.5-b) due to 

endothermic steam reforming reaction which causes a significant increase of ohmic overpotential 

(Figure II.5-c) because of a higher activation energy of aged interconnects. 
 

 
 

 

     

 

 

Figure II.5 DR% under different loads at 1023 K inlet temperature and feeding a wet hydrogen mixture and air as oxidant 

(a), local maps of temperature (b) and ohmic overpotential (c) after 400 h under direct internal reforming operation at 0.4 

A cm-2.  
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Finally, as an example of microscale level simulation, the performance of aged hydrogen electrode 

based on Ni-YSZ in ASC and Ni-CGO in ESC was simulated after 1000 h operation in fuel cell mode 

co-flow feeding an anodic wet hydrogen mixture and air as oxidant [14]. Indeed, the hydrogen 

electrode is one of the most critical elements in a cell. Referring to Ni-YSZ based ASC tested at 0.4 

A cm-2 and 1023 K, microstructural analysis performed by DTU underlines main changes above all 

in the functional layer (i.e., the zone near to electrolyte interface), where Ni agglomeration is detected 

showing a particle size increase of ~40 % as compared to the reference sample with a bit higher 

values in the outlet section. Ni fraction also decreases of ~50 % points in aged cell, resulting in 

porosity increase. Looking at electrochemical kinetics, these processes influence above all the 

catalytic activity dependent on exchange current density and here TPB length (Table II.2). Indeed, it 

decreases after 1000 h working with lower values at the aged sample outlet, suggesting the 

produced steam as accelerating degradation factor in view of its higher content (Figure II.6-a), as 

already reported in previous literature [15,16]. Considering this trend, the anodic activation 

overpotential of aged cell becomes 2.5 times higher than nominal case, showing a minimum profile 

along the flow direction (Figure II.6-b) differently from reference cell map (Figure II.3-a). Indeed, 

higher values characterize (i) the inlet since the reaction develops above all in the first centimeters 

of cell plane resulting in higher local current density as observed in nominal case, and (ii) the outlet 

where larger Ni radii are detected worsening the electrode performance. 

 

      

 

Figure II.6 Ni-YSZ electrode properties considering OCV exchange current density (a) and resulting anodic activation 

overpotential under 0.4 A cm-2 (b) after 1000 h operation at 1023 K and feeding 96/4 %vol H2/H2O mixture and dry air.  

 

Considering the ageing of Ni-CGO based ESC after 1000 h operation at 0.2 A cm-2 and 1123 K, the 

main variations characterize the ohmic overpotential partially due to hydrogen electrode degradation. 

Differently from the quite homogenous Ni-YSZ initial composition, ESC electrode is composed by 

three sections: a pure CGO layer at electrolyte interface, the effective catalytic zone of Ni-CGO 

cermet and a Ni top layer to improve conductivity. After ageing, the microstructural features of CGO 

barrier layer are almost unchanged with comparison to the reference cell, but its thickness is 

increased due to Ni migration away from the zone adjacent to the electrolyte. At the top contact layer, 

the percolating Ni rises at both inlet and outlet to ~60 %, and a significant Ni particle coarsening is 

also detected resulting in ~30 % size increase compared to the initial structure. Such phenomena 

cause Ni-CGO total ohmic resistance averaged increase of ~50 %, due to above all Ni loss near to 

the interface with electrolyte (Figure II.7). Ni coarsening and above all porosity increase also cause 

the reduction of Ni contact layer conductivity. However, the computed variations are quite negligible 
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with respect to global cell measured ohmic resistance which is mainly influenced by ionic conductor 

layers (i.e., YSZ electrolyte and CGO barrier layer). 

 

Figure II.7 Ohmic resistance along Ni-CGO electrode thickness for nominal state, at inlet and outlet sections after 1000 

h operation at 1123 K and 0.2 A cm-2 feeding 96/4 %vol H2/H2O mixture and dry air.  

  

0

5

10

15

20

25

0.5 1.3 3.3 6.7 13.3 16.7 20 25

R
es

is
ta

n
ce

 [
m

Ω
cm

2
]

Distance from electrolyte [μm]

Ni-CGO Ohmic resistance at 1000 h

Before After inlet After outlet



   
 

20 
 

REFERENCES 

[1] F.R. Bianchi, A. Baldinelli, L. Barelli, G. Cinti, E. Audasso, B. Bosio. Multiscale Modeling for 

Reversible Solid Oxide Cell Operation. Energies, 13(19), 2020, 5058. 

[2] F. Lonis, V. Tola, G. Cau. Renewable Methanol Production and Use through Reversible Solid 

Oxide Cells and Recycled CO2 Hydrogenation. Fuel, 246, 2019, 500–515. 

[3] M. Ni, M. Leung, D. Leung. Parametric Study of Solid Oxide Steam Electrolyzer for Hydrogen 

Production. International Journal of Hydrogen Energy, 32(13), 2007, 2305–2313. 

[4] M. Hauck, S. Herrmann, H. Spliethoff. Simulation of a reversible SOFC with Aspen Plus. 

International Journal of Hydrogen Energy, 42(15), 2017, 10329–10340. 

[5] F.R. Bianchi, B. Bosio, A. Baldinelli, L. Barelli. Optimization of a Reference Kinetic Model for Solid 

Oxide Fuel Cells. Catalysts, 10(1), 2020, 104. 

[6] F.R. Bianchi, R. Spotorno, P. Piccardo, B. Bosio. Solid Oxide Fuel Cell Performance Analysis 

through Local Modelling. Catalysts, 10(5), 2020, 519. 

[7] A.K. Padinjarethil, F.R. Bianchi, B. Bosio, A. Hagen. Anode and Electrolyte Supported Solid Oxide 

Fuel Cells: Experimentation and Modelling. European Fuel Cell Forum, October 2020. 

[8] A.K. Padinjarethil, F.R. Bianchi, B. Bosio, A. Hagen. Electrochemical Characterization and 

Modelling of Anode and Electrolyte Supported Solid Oxide Fuel Cells. Frontiers in Energy Research, 

9, 2021, 668964. 

[9] M. Riegraf, V. Yurkiv, R. Costa, G. Schiller, K. A. Friedrich. Evaluation of the Effect of Sulfur on 

the Performance of Nickel/Gadolinium-Doped Ceria Based Solid Oxide Fuel Cell Anodes. 

ChemSusChem, 10(3), 2017, 587–599. 

[10] W.G. Bessler, M. Vogler, H. Störmer, D. Gerthsen, A. Utz, A. Weber, E. Ivers-Tiffée. Model 

Anodes and Anode Models for Understanding the Mechanism of Hydrogen Oxidation in Solid Oxide 

Fuel Cells. Physical Chemistry Chemical Physics, 12(42), 2010, 13888. 

[11] M. Athanasiou, D.K. Niakolas, S. Bebelis, S. G. Neophytides. Steam effect on Gerischer 

Impedance Response of a Ni/GDC|YSZ|LSM Fuel Cell/anode. Journal of Power Sources, 448, 2020, 

227404. 

[12] R. Spotorno, F.R. Bianchi, D. Paravidino, B. Bosio, P. Piccardo. Test and Modelling of Solid 

Oxide Fuel Cell Durability: A Focus on Interconnect Role on Global Degradation. Energies, 15(8), 

2022, 2762. 

[13] Z. Stoynov, D. Vladikova, B. Burdin, J. Laurencin, D. Montinaro, G. Raikova, G. Shiller, P. Szabo. 

Differential Analysis of SOFC Current-Voltage Characteristics. Applied Energy, 228, 2018, 1584–

1590. 

[14] A.K. Padinjarethil, F.B. Bianchi, B. Bosio, A. Hagen. Degradation of Ni-YSZ and Ni-GDC Fuel 

cells After 1000 h Operation: Analysis of Different Overpotential Contributions According to 

Electrochemical and Microstructural Characterization. European Fuel Cell Conference, December 

2021, Online Conference.  

[15] L. Holzer, B. Iwanschitz, Th. Hocker, B. Münch, M. Prestat, D. Wiedenmann, U. Vogt, P. 

Holtappels, J. Sfeir, A. Mai, T. Graule. Microstructure Degradation of Cermet Anodes for Solid Oxide 

Fuel Cells: Quantification of Nickel Grain Growth in Dry and in Humid Atmospheres. Journal of Power 

Sources, 196(3), 2011, 1279–1294. 

[16] M.B. Mogensen, M. Chen, H. L. Frandsen, C. Graves, A. Haunch, P. Van Hendriksen, T. 

Jacobsen, S.H. Jensen, T.L. Skafte, X. Sun. Ni Migration in Solid Oxide Cell Electrodes: Review and 

Revised Hypothesis. Fuel Cells, 2021, fuce.202100072. 

  



   
 

21 
 

III. Dynamic lumped parameter models for degradation accelerating factor 

identification (UNISA) 

The lumped parameter model designed by UNISA is meant to simulate SOC operation in both fuel 
cell and electrolyser modes. To do so, key electrochemical equations and cell microstructure 
parameters are introduced and improved starting from the model already proposed in the work of 
Polverino et al. [1]. In such way, the degradation phenomena detailed within the project can be 
mathematically simplified and embedded in this model to have a comprehensive but fast simulation 
platform for degradation rate estimation and the identification of accelerating factors.  
 

III.1 SOC lumped model description 

To design the model according to samples and data coming from the AD ASTRA project, the 
electrode supported SOC already accounted by CEA (and fully addressed in their works) is here 
considered. The single cell layers are the following [2,3,4]: (i) Ni-YSZ hydrogen electrode (with cell 
support function), (ii) dense YSZ electrolyte, (iii) CGO barrier layer, (iv) oxygen electrode with multi-
layer structure (a MIEC made of LSCF+CGO directly in contact with the barrier layer and a single 
substrate of LSCF, located between the MIEC and the current collector), and (v) LSC current 
collector. The key structural features considered in the model are listed in Table III.1.  
 
Table III.1 Structural features of the CEA reference SOC requested for UNISA lumped parameter model. 

Parameter 
H2 

electrode 
Electrolyte 

Barrier 
layer 

O2 
electrode 
bottom 

O2 
electrode 

top 

Current 
collector 

Composition Ni+YSZ dense YSZ CGO LSCF+CGO LSCF LSC 
Thickness [μm] 260 8 5 15 18 20 

Porosity [-] 0.29 - - 0.435 0.513 - 
Ni vol. frac [-]. 0.287 - - - - - 

YSZ vol. frac. [-] 0.423 - - - - - 
LSCF vol. frac. [-] - - - 0.301 0.487 - 
CGO vol. frac. [-] - - - 0.264 - - 

Ni diam. [μm] 0.46 - - - - - 
YSZ diam. [μm] 0.37 - - - - - 

LSCF diam. [μm] - - - 0.38 - - 
CGO diam. [μm] - - - 0.32 - - 

Tortuosity [-] 1.67 - - 1.55 1.66 - 

 
The single cell voltage Vsc is modelled by subtracting to the Nernst potential Vner the different 
polarization losses (Equation III.1). 

Vsc=Vner-Vact-Vohm-Vcon-Voff  (III.1) 

Where Vact, Vohm, Vcon and Voff are the activation, ohmic, concentration and offset losses, respectively. 
The Nernst voltage is modelled as in Equation III.2. 

Vner = 1.274 − 2.765 ∙ 10−4𝑇[𝐾] +
𝑅𝑇

2𝐹
ln (

𝑝𝐻2
𝑝𝑂2

0.5

𝑝𝐻2𝑂

)   (III.2) 

The activation losses are modelled through an adapted Tafel equation that applies for losses at both 
anode and cathode sides referring to fuel cell mode (Equations III.3, III.4 and III.5). 

Vact=Vact,an+Vact,ca   (III.3) 

Vact,an =
J

|J|

RT

2αF
 ln (1+

|J|

Jex,an
)   (III.4) 
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Vact,ca =
J

|J|

RT

2αF
 ln (1+

|J|

Jex,ca
)   (III.5) 

Where the absolute value of the current density J is introduced to account for both fuel cell (positive 
current) and electrolysis (negative current) operation. Jex,an and Jex,ca are the exchange current 
densities at hydrogen and oxygen electrodes, respectively. These are proportional to the TPB 
lengths of each electrode through lumped coefficients kan and kca, as shown in Equations III.6 and 
III.7. 

Jex,an=kanlTPB,an (
pH2

pref
)

0.5

(
pH2O

pref
)

0.5

exp
(- 

Eact,an
RT

)
   (III.6) 

Jex,ca=kcalTPB,ca (
pO2

pref
)

0.25

exp
(- 

Eact,ca
RT

)
   (III.7) 

The ohmic loss is evaluated as the sum of each layer conduction resistance, being the ratio between 
layer thickness μ and conductivity σ (Equation III.8). 

Vohm= ∑
μ

σ
J   (III.8) 

Layer conductivities depend on the type of microstructure: in case of single material the conductivity 
is that of the dense solid, whereas, in case of multiple materials, percolation theory is accounted [1]. 
The dense solid material conductivities, expressed in S m-1, are taken from the literature [1,4,5,6], 
as shown in Equations III.9, III.10, III.11, III.12 and III.13 for different cases. 

𝜎𝑁𝑖 = 3.27 ∙ 106 − 1065.3𝑇   (III.9) 

𝜎𝑌𝑆𝑍 = 6.25 ∙ 104exp
(−

10300

𝑇
)
 (III.10) 

𝜎𝐶𝐺𝑂 =
8.56 ∙ 106

𝑇
exp

(−
65∙103

𝑅𝑇
)

− 1065.3𝑇   (III.11) 

𝜎𝐿𝑆𝐶𝐹 = 37177(𝑝𝑂2
)

(−0.52𝑝𝑂2
0.0275+0.558)

 (III.12) 

𝜎𝐿𝑆𝐶 =
2.01 ∙ 108

𝑇
exp

(−
3860

𝑅𝑇
)
 (III.13) 

The concentration losses are as well expressed with respect to each electrode contribution, referring 
again to fuel cell mode into formulation (Equations III.14, III.15 and III.16). 

Vcon=Vcon,an+Vcon,ca   (III.14) 

𝑉𝑐𝑜𝑛,𝑎𝑛 =
𝑅𝑇

2𝐹
ln (1 +

𝐽

𝐽𝑙𝑖𝑚,𝐻2𝑂

) −
𝑅𝑇

2𝐹
ln (1 −

𝐽

𝐽𝑙𝑖𝑚,𝐻2

) (III.15) 

𝑉𝑐𝑜𝑛,𝑐𝑎 =
𝑅𝑇

4𝐹
ln (1 −

𝐽

𝐽𝑙𝑖𝑚,𝑂2

) (III.16) 

Where the limiting current densities related to the reactants and products at both electrodes are 
formulated in Equations III.17, III.18 and III.19. 

𝐽𝑙𝑖𝑚,𝐻2𝑂 =
2𝐹𝐷𝑎𝑛

𝑒𝑓𝑓
𝑝𝐻2𝑂

𝑅𝑇𝜇𝑎𝑛

  (III.17) 

𝐽𝑙𝑖𝑚,𝐻2
=

2𝐹𝐷𝑎𝑛
𝑒𝑓𝑓

𝑝𝐻2

𝑅𝑇𝜇𝑎𝑛

 (III.18) 
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𝐽𝑙𝑖𝑚,𝑂2
=

4𝐹𝐷𝑐𝑎
𝑒𝑓𝑓

𝑝𝑂2

𝑅𝑇𝜇𝑐𝑎

 (III.19) 

The electrode diffusion coefficients take into account binary and Knudsen diffusion. 
The initial version of the model published in [1] has already been verified on experimental data in 
fuel cell mode. The updated version presented in this deliverable has also been applied to the 
experimental data in electrolyser mode from CEA and published in the work of Monaco et al. [3]. The 
results are shown in Figure III.1, proving the good accuracy of the model and its capability to be 
applied in both fuel cell and electrolyser modes. 
 

 
Figure III.1 UNISA lumped parameter model simulation of SOC operation in electrolyser mode and comparison with CEA 
experimental data from Monaco et al. [3]. 

 
To perform degradation rate estimation and accelerating stress factor identification, simplified 
degradation functions related to the mechanisms investigated in the project are introduced in the 
SOC performance model. In the following section, the Ni agglomeration mechanism addressed and 
modelled in detail by CEA is considered and discussed. 

III.2 Implementation of low-level degradation model: Ni agglomeration example 

The definition of a Ni agglomeration simplified model is essential for its implementation within the 
lumped performance model for degradation rate estimation according to the given operating 
conditions. A first study has been already conducted in [1], where the Ni agglomeration model was 
taken from literature, and it was properly used to identify the key accelerating stress factors for 
transfer function design. 
To address data and models developed within the AD ASTRA project, the work done by CEA on the 
Ni agglomeration/coarsening (see Section I.1) is accounted for the simulation of Ni particle growth 
over time. The simplified model that expresses such behaviour depends on the initial Ni particle size 
and time according to Equations III.20 and III.21. 

𝐷𝑁𝑖(𝑡) = [𝑘𝑝𝑜𝑤 ∙ 𝑡 + (𝐷𝑁𝑖(𝑡 = 0))
𝑛

]
1

𝑛⁄
  (III.20) 

𝑘𝑝𝑜𝑤 = 𝑘0 ∙ exp
(−

𝐸𝑎𝑐𝑡
𝑅𝑇

)
 (III.21) 

The model has been checked with respect to the experimental observations performed by CEA and 
published in [3], as shown in Figure III.2. 
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Figure III.2 Comparison of simplified Ni agglomeration model with experimental data from Monaco et al. [3] (conceived 
from CEA activity – Section I.1). 

 
To further correlate the main affected mesoscale parameters to the Ni agglomeration model 
expressed with respect to Ni particle diameter, the link between the density of TPB length and Ni 
diameter growing over time is explicitly established as in Equation III.22. 

𝑙𝑇𝑃𝐵,𝑎𝑛(𝑡) = 𝑙𝑇𝑃𝐵,𝑎𝑛(𝑡 = 0)
𝐷𝑁𝑖(𝑡 = 0)

𝐷𝑁𝑖(𝑡)
 (III.22) 

Through Equation III.22, the density of TPB length at the hydrogen electrode (that appears in 
Equation III.6) has an inverse correlation with the Ni particle diameter: indeed, it reduces over time 
since the diameter increases due to the agglomeration process. This reflects the loss in TPB that is 
one of the main effects of the degradation mechanism (as already remarked in [1]).  
To check whether the simplified formulation is correct, the model is again compared with the 
experimental data of CEA (Section I.1) published in [3], and the results are shown in Figure III.3. 
From the achieved trends, the comparison can be considered satisfactory and useful for the 
purposes of singling out accelerating stress factors and building mathematical transfer functions. 
 

 
Figure III.3 Comparison of simplified degradation model for the density of TPB length subject to Ni agglomeration with 
experimental data from Monaco et al. [3] (conceived from CEA activity – Section I.1). 
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III.3 Transfer function generation method 

The methodology to design mathematical transfer functions capable of correlating degradation rates 
and applied operating conditions has been fully presented and discussed in [1]. The proposed 
procedure has been structured in eight main steps, that are: 

• Step 1: the identification of degradation mechanisms and the design of microscale parameter 
models; 

• Step 2: the identification of the affected mesoscale parameters and the design of related 
models; 

• Step 3: the design of an overall simplified performance model; 

• Step 4: the link among the models through a multiscale approach; 

• Step 5: the application of a parametric analysis to assess the influence of the operating 
conditions on degradation rate; 

• Step 6: the identification of the accelerating stress factors; 

• Step 7: the design of mathematical transfer functions to correlate accelerating factors and 
degradation rate; 

• Step 8: the development of guidelines for lifetime estimation and AST protocol design. 
In the work [1] such method has been applied to Ni agglomeration mechanisms, providing a 

mathematical transfer function with the following expression for the degradation rate  (Equation 
III.23). 

ξ[mV/kh]=a1expa2T[°C](expa4JN − expa4JN) (III.23) 

The coefficients a1, a2, a3 and a4 are function of the hydrogen electrode pressure, whereas the explicit 
variables are the temperature T and the normalized current JN density expressed as the ratio 
between the applied current density and the maximum one related to the specific working 
temperature and pressure. This function has been obtained through a first parametric analysis, which 
singled out the current density, the temperature and the hydrogen electrode pressure as accelerating 
stress factors. Then, the lumped performance model, with embedded low-level degradation 
functions, has been used to simulate degradation rates at different stress factor values, and the 
achieved results have been fitted to identify the coefficients necessary for the transfer function in 
Equation III.23. 
The use of the proposed transfer function has been summarized through a surface map (Figure III.4), 

in which the degradation rate  is shown as a function of the temperature (x-axis) and normalized 
current density (y-axis) while keeping constant the hydrogen electrode pressure. 
 

 
Figure III.4 Degradation rate map obtained through the mathematical transfer function shown in Equation III.23, with 
variable temperature and normalized current density and given hydrogen electrode pressure [1]. 
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A further improvement of the methodology illustrated in [1] is here proposed by leveraging the 
strength of both UNISA lumped models and UNIGE 2D model (Section II). This allows to perform an 
advanced estimation of degradation rate according to the following tasks.  
The key objective leading to this improvement is related to the need for bringing into the lumped 
parameter model (that is basically a 0D model) the information related to the spatial distribution of 
the key parameters within the cell structure and area (information derived by a 2D model, but not 
available in a 0D approach). Therefore, the UNISA lumped model presented in Section III.1 is 
improved with information related to parameter surface distribution available in the UNIGE model, 
without losing the low computational efforts of the lumped model.  
The information that can be obtained in this context from the UNIGE 2D model simulation could be, 
for instance, related to the area distribution of the cell temperature and hydrogen molar fraction, as 
shown in Figure III.5. The proposed area distributions have been achieved through the simulation of 
fuel cell with an inlet temperature of 1023 K, a current density of 0.5 A/cm2 and an inlet H2 molar 
fraction of 0.8. From these distributions, minimum, maximum, mean and standard deviation values 
can be obtained (as also reported in the bottom of Figure III.5). These values can represent a 
significant improvement in degradation rate estimation, since a distribution range of operating values 
can be used in the UNISA lumped model. In this way, also degradation effects not affecting the 
average values but surface distribution instead will be accounted. For instance, local temperature 
hot spots might introduce a slight increase in the cell temperature average distribution, but they could 
induce a strong change in the maximum and standard deviation values. 

 

Figure III.5 Area distribution of SOC  temperature (left) and H2 molar fraction (right) simulated by the UNIGE 2D model 
under crossflow fed fuel cell mode with gas inlet temperature of 1023 K, current density of 0.5 A/cm2 and inlet H2 molar 
fraction of 0.8. 

 
The information related to the parameter distribution embedded within the lumped parameter model 
can be used to update the methodology for the design of the mathematical transfer functions adding 
statistical distributions based on physical significance. Specifically, the introduction of such features 
derived from surface distributions, thus connecting UNISA and UNIGE models, represents the basis 
of the procedure for the estimation of RUL/degradation rates depicted in Figure III.6. 
According to the proposed scheme, the conventional RUL estimation currently performed with the 
UNISA lumped model is initially shown in Figure III.6-a. This can be easily obtained with the transfer 
function previously presented (or also with the surface in Figure III.4). In this step, the performance 
model (or the transfer function itself) is used to simulate the voltage degradation over time, given a 
degradation phenomenon under a specific operating condition. The RUL is estimated when the 
voltage reaches the End-of-Life (EOL) criterion, i.e., when failure time occurs. The update of the RUL 
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estimation is achieved through the first step (step 1 in Figure III.6-b) that consists in the introduction 
of the variable distribution features (i.e., average, minimum, maximum, etc.) derived from the UNIGE 
2D model maps within the UNISA lumped model. In this way, a statistical probability range is 
associated to the RUL estimation, leading to a failure time window instead of a single stochastic 
value. The second step (step 2 in Figure III.6-c) can be performed – although not essential in a 
preliminary analysis – to update the simulation carried out by the UNISA model. In this case, a 
simulation update time is chosen, and the variable surface distributions are updated with the UNIGE 
model results. This latter can take as inputs the inlet variables and structural parameters available 
from the UNISA model (affected by degradation and changed over time) to reduce computational 
efforts characterising higher-level model dynamic simulation. The updated distribution is then 
introduced into the UNISA lumped model and the failure time window is updated. As said, this latter 
step could further improve the estimation of degradation rate and the building of more accurate 
mathematical transfer functions (since the correlation among degradation rates and accelerating 
factors is improved through discussed two-step simulation approach). 

 
Figure III.6 (a) Initial approach and (b-c) two-steps procedure scheme for degradation rate/RUL estimation combining 
UNISA lumped model and UNIGE 2D model, useful for the update of mathematical transfer function with embedded 
statistical significance of accelerating factors.  
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IV. Signal based learning multiple model for cell prognosis (EIFER) 

The multiple model algorithm uses a complex structure, which is presented in Figure IV.1. A dataset 
is provided to a supervisor model, which separates the output data according to operation points or 
operation intervals of the electrochemical device, as the electrolysis stack in one of the studied 
cases. The current is used as input parameter to identify the operation points and the voltage is used 
as output parameter to estimate the degradation. Since there are no physical structures in this model, 
it is not a problem to exchange the input and output parameters with other system variables based 
on the operation regime, e.g., constant current or constant power. The voltage could be exchanged 
with the temperature or there could be even another ageing criteria calculated. 
 

 

Figure IV.1 Multiple model algorithm. 

A calibration phase is used to calculate thresholds and general signal properties. 

The supervisor model monitors the sorted data to detect steps and peaks due to possible incidents 

during the operation. An incident in the data triggers an analysis in the operation point model to 

clarify if there is a change in the present status or an increased ageing rate. If the data stabilizes 

again at comparable values and rates like before the incident, the old database is kept and will be 

used. If there are significant changes, the old data is kept but not used any longer for prognosis. The 

change is quantified and reported to the operator. 

Each operation point model has its operation point related data and a toolbox with different methods, 

which can even include evaluation method to decide among different fitting functions in order to 

detect the best fit for the future. Outliers should not be considered since they are more related to the 

measurement system than to the monitored stack. Consequently, the approach is to detect and 

replace them by mean values based on the former data points. A key information is to evaluate the 

stability of the data. Short-term dynamics have much bigger impacts on the voltage than the ageing 

rate. Therefore, the dynamic processes make a feasible estimation of the long-term operation very 

difficult. The ageing rate and the present status should be analysed on the stabilized parts. There 

could be an analysis to detect the source of instabilities, but from a systematic point of view it is more 



   
 

30 
 

important to compare and analyse data that has a comparable stability. Prognosis requires data that 

was measured under the same or similar conditions in order to identify the degradation based on the 

same system status. If the data is very dynamic, a time analysing method to find transitional time 

delays is more preferable than a linear fit for the ageing analysis. Last but not least a suitable ageing 

parameter is used for estimation and is provided to the supervisor model. 

In the end, the supervisor model uses the information of all operation point models and the most 

probable future load profile based on the input parameter to estimate the decrease in the output 

parameter usually until a deterioration of 20 %. 

The proof of concept for the multiple model algorithm was already done for PEM fuel cells [1]. Since 

the subject is very complex, an important goal during the project was a proof of concept for solid 

oxide cells and the improvement of key methods, like the step detection, the stabilization detection 

and the online outlier treatment. If the methods work in a proper way, they provide analysis results 

like in the next sections. 

IV.1 Analysis on data measured by EIFER  

First measurement series 

Figure IV.2 and Figure IV.3 present different operation points (26 A and -64 A as applied currents) 
of the electrolyte supported 10 cell stacks (Ni-GDC/GDC/3YSZ/GDC/LSCF). All figures plot the 
voltage in volt as function of the time in hours. The top plots present the overview over the complete 
measurement series. The title of the top plots includes estimations of the Remaining Useful Lifetime 
(RUL) in years for the different parts until computing a voltage reduction of 20 %. When the current 
is 0 A, it is not considered as operation and therefore has no RUL estimation. The bottom plots are 
zoomed in views of the fitted data. The stabilized parts and the fits are coloured. In addition, the title 
of the bottom plots presents the voltage means and the ageing rates as well to support any analysis 
of the experiments. 

 

Figure IV.2 First dataset focused on a current of 26 A (fuel cell mode). 

Figure IV.2 presents a decreasing voltage in all presented windows, which is consistent since the 

stack runs in fuel cell mode. The stack runs well until 370 hours. The mean values and the ageing 

rates before this time are similar, even if there are some other events in between. The first part of 
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Figure IV.2 can be taken as showcase to explain how systematic prognosis acutally works. 

Unfortuantely, it seems that an incident takes place after 370 hours. The degradation analysis makes 

it possible to quantify a 10 % loss of voltage due to the incident. In addition, the ageing rate increases 

as well, but seems to stabilize around 450 hours at a higher degradation with respect to the values 

before the incident. The observations are supported by the RUL estimations of the different fits. 

 

Figure IV.3 First dataset focused on a current of -64 A (electrolysis mode). 

Figure IV.3 shows the stack working at -64 A in electrolysis mode. The bottom left graph presents a 

decreasing voltage between 500-600 hours, which is not the expected behaviour for electrolysis 

mode. Most probably, it did not reach a stabilized equilibrium yet. Whereas the bottom right plot 

shows the expected behaviour: an increasing voltage during electrolysis mode after 700 hours. It 

starts at lower voltage compared to the bottom left graph. Unfortunately, the degradation is quite 

significant and it does not take long to reach a 20 % decrease in the voltage, which is support by a 

RUL estimation of 0.7 year. According to the log from the lab, the evaporator was close to its end of 

life. The effect on the stack was devastating and urges to implement a condition monitoring with a 

condition-based maintenance approach. The incident underlines the need for advanced 

maintenance techniques, since a significant degradation of a stack is not necessarily caused by the 

stack but be due to the balance of plant and its components. 

Second measurement series 

Figure IV.4 shows longer stabilization phases at -64 A electrolysis mode and a short operation at -

60 A. After 850 hours, the trend stabilizes and turns to an increasing voltage which is expected for 

electrolysis mode. 
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Figure IV.4 Second dataset focused on a current of -60 A and -64 A (electrolysis mode). 

Table IV.1 provides an overview of the two-measurement series considering all different applied 

operation points. It can be concluded from the time basis of the stabilized operation hours that the 

second measurement series went better after the evaporator was replaced in comparison to the first 

one. In addition, the RUL estimation of the fuel cell mode of 2.6 years and the electrolysis mode of 

2.9 years are comparable in this last dataset. 

Table IV.1 Ageing rates related to two measured datasets with their basis in hrs. 

 

 

Outlier treatment 

As an important step for cell operation analysis, an outlier treatment was developed. It is based on 

the last values and the double standard deviation. The standard deviation and the mean values are 

calculated based on the last measured values. If the threshold of double standard deviation plus the 

mean value is crossed, the next measured point is analysed as well. If the next value is within the 

last value plus the double standard variation, a peak or a step is likely. Otherwise, an outlier is likely 

and the last value will be corrected by its neighbour values.  
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Figure IV.5 First dataset where blue represents the untreated data and red the treated data. The four plots on the bottom 

show examples to prove that the treatment deleted single values but kept ramps and steps. 

The window of the double standard deviation includes over 100 past values to reduce the impact of 

steps on the outlier treatment. The treatment was successfully tested on the initial and the first 

measured dataset. Figure IV.5 shows the results. The first measured dataset shows not so much 

noise; therefore, it was not corrected many times. It is important to notice that noise based on a less 

stable operation was not corrected, since it is related to real observed system behaviour and not 

outliers. 

IV.2 Analysis on data shared within AD ASTRA consortium 

In order to challenge and show the capabilities the algorithm, the following data of partners were 

investigated: 

• CEA data set 1 - “CEA_data 15m Elisa3 8pC_steam in air”, air humidified at 8% - ΔU = 45 

mV/kh (12 mV/kh after 600 h of operation); 

• CEA data set 2 - “CEA_data collées 15min L717”, dry air - ΔU = 27 mV/kh (7 mV/kh after 600 

h of operation); 

• CEA data set 3 - “CEA_data collées 15min L718 sofc”, fuel cell mode - air humidified at 8% 

- ΔU = 20 mV/kh; 

• DTU data set 1 - “DTU_12test138_durability” and DTU data set 2 - “ESC_6test79_V_t 96_4 

H2 H2O_1000h”; 

• EPFL data set 1 - “0042_EPFL_New_V-t_2021426124144” and EPFL data set 2 - 

“UvsTime_0040_2021426124951”. 

A key step for the proposed approach is the automated operation point detection in order to sort data 

according to comparable operation states. Figure IV.6, Figure IV.7 and Figure IV.8 show the results 

for some of the partners’ data. The top plot presents the main parameter, which was used for sorting 

the data according to the operation points of the chosen parameter. It can be the current like in 
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Figure IV.8 or any other system parameter as well; e.g. Figure IV.6 was classified based on the 

temperature and Figure IV.7 was classified based on the oxygen. The different operation points are 

coloured to visualize the results. The middle and the bottom plot show other system parameters, 

which are classified into zones based on the top parameter. Figure IV.8 shows the sectioning based 

on the current, but it shows as well an incident in the voltage. The incident has to be identified by the 

step detection and needs to be investigated since the main operation parameter did not change, but 

a core output parameter is disturbed. This data should not be used for prognosis neither, because it 

represents a nonnominal operation which might lead to a nonnominal degradation. The algorithm 

needs to detect if the disturbance stabilizes or if it is reversed and the system comes back to its old 

state. This might sound trivial for a single operation point, but if there are two or more parameters 

selected as main parameters, an automated detection and organisation of operation point models 

can handle different data sets and provide a reliable prognosis and a diagnosis on top. 

In addition, Figure IV.6 and Figure IV.7 show the potential to use different operation parameters 

beside the current as the main operation point. It is possible to develop the algorithm towards a 

multidimensional matrix. Instead of using one operation point parameter to create databases with 

similar operation states, two or three operation parameters could be used, forming matrices of 

operation point models. On the other hand, a future operation profile of each operation parameter is 

required as well in this case.  

Figure IV.6 presents the data classified by the parameter “Coclyco1T1” (i.e., the temperature) under 
almost constant current (not plotted). “Coclyco1U1” is the voltage and “Coclyco1RDM_O2” is related 
to the flow rate of oxygen. Due to the automatic classification, the impact of “Coclyco1T1” can be 
analysed. It seems to speed up the degradation. After 1200 hours, the current is switched off for a 
while, which leads somehow to an improved performance. On the other hand, at 1500 hours, the 
trend before 1200 hours is reached again. “Coclyco1RDM_O2” has a more significant impact on the 
voltage than “Coclyco1T1” and can be clearly detected. 

 
Figure IV.6 CEA data investigated by the Coclyco1T1 as main operation parameter. 

Figure IV.7 shows the impact of “O2_in”. “O2_in” is the Nernst potential between the fuel gas in and 
(outer) air in the sensor. The peaks are caused by the current. In this case it would make sense to 
use both, the current and “O2_in” as main operation point parameters. “O2_in” shows a clear relation 
the voltage. 
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Figure IV.7 DTU investigated by different O2_in as main operation parameter. 

Figure IV.8 presents the current as main operation parameter, which is the common approach for 
operating electrochemical devices. In addition, an incident around 500 hours is included in this 
dataset as well. The algorithm sorts the data to the operation points and the operation point model 
analyses its dataset. In this case, the incident causes instability and a step which is detected by the 
algorithm. An incident might change the state of the cell or stack in a way that it ages faster or loses 
some lifetime. As a conclusion, the algorithm has to monitor and to analyse the new state but keep 
the old state in case a reversible effect happened. Another important aspect is that the algorithm 
should only include stabilized parts of the data to prognose the lifetime. Therefore, the Sum of 
Absolute Difference (SAD) based on a moving averaged was applied as described in the followed 
section.  

 
Figure IV.8 EPFL data investigated by current as operation parameter. The pressure drop sensor shows some capabilities 

to detect the occurred incident at 500 h and may be some potential for diagnosis as well. 
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Step detection and stabilisation detection 

The Sum of Absolute Difference (SAD) is applied on a 100 values window for analysing the present 
data. The moving mean is calculated for different sizes of the moving window. The bigger the window 
gets, the smaller the SAD between the moving averaged and the original data is, when the signal is 
stable. The change of the SAD (ΔSAD) shows a comparable picture if there are no local disturbance. 
Local disturbances are for example fluctuations or significant oscillations. The changed is normalized 
based on its maximum. If a step occurs, the first value is not any longer the maximum value. 

The method was applied on EPFL data presented in Figure IV.8. The incident around 500 hours was 
taken as example to show the capabilities of the approach. Figure IV.9 and Figure IV.10 present the 
results related to parts before the incident and Figure IV.11 shows the incident. 

 
Figure IV.9 Stabilized voltage signal (top) - Sum of Absolute Difference (SAD) between the stabilized signal and the moving 

mean with different window sizes (middle) - Normalized change of the SAD (ΔSAD) (bottom). 

 
Figure IV.10 Locally disturbed voltage signal (top) - Sum of Absolute Difference (SAD) between the voltage signal and the 

moving mean with different window sizes (middle) - Normalized change of the SAD (ΔSAD) with a folded trend (bottom). 
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Figure IV.9 shows a stabilized part of the data. The SAD and the normalized ΔSAD show a more or 

less asymptotic and orderly trend. The more unstable the part of the data gets, the more chaotic both 

criteria become. Figure IV.10 shows a disturbed trend in ΔSAD, which can be noticed in the plotted 

part of the voltage signal. The voltage signal of Figure IV.10 is more chaotic and irregular than the 

voltage signal of Figure IV.9.  

 
Figure IV.11 Voltage signal with a noisy step (top) - Sum of Absolute Difference (SAD) between the voltage signal and the 

moving mean with different window sizes (middle) - Normalized change of the SAD (ΔSAD) with a disarranged maximum 

value (bottom). 

Figure IV.11 presents the voltage trend with a noisy but significant step. As a consequence, ΔSAD 
breaks the asymptotic trend completely by changing the position of the maximum value and saw 
tooth shape of the trend. In some cases, the SAD is more suited to detect steps and both criteria are 
impacted by constant values as well. The stabilisation detection is challenging, especially if a general 
approach is desired. Different types of noise, different signals to noise ratios and differently 
measured data usually need to be investigated individually. The found approach was successfully 
used on previously shown data, but more validation on different systems is recommended to 
investigate the robustness of the criteria. 

Ageing rate investigation 

The ageing rate investigation of EPFL sample is represented in Figure IV.12. The plot visualizes that 
at 200 hours some useful changes were made since the degradation rate reduces significant and 
the voltage is in the beginning even lower than values before 200 hours. The shut down around 300 
hours reduces the ageing rate even further, but voltage increases by several percent, which means 
a sudden consumption of lifetime for a small degradation rate. The incident around 450 hours leads 
to significant increased degradation rates, even afterwards at 550 hours when the cell was recovered 
from the incident. On the other hand, the voltage does not change much. There is no sudden 
consumption of lifetime during this incident. Starting from 700 hours, the cell is stabilized again and 
degrades under a small rate. 
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The results of the aging analysis for all EPFL data is plotted in Table IV.2. Table IV.3, Table IV.4 and 
Table IV.5 present the analysis results for all DTU and CEA data sets. If the mean voltage in Table 
IV.2 decreases due to an incident, in most of the cases the ageing rate increases significant for a 
while. In SOEC mode, a decrease of the voltage means an improvement of the performance under 
constant current. 

 
Figure IV.12 Remaining useful lifetime estimation of “UvsTime_0040_2021426124951” dataset from EPFL sample with 

mean1=1.41 V and grad1=1610 mV per khrs; mean2=1.48 V and grad2=440 mV per khrs; mean3=1.54 V and grad3=150 

mV per khrs; mean4=1.54 V and grad4=1917 mV per khrs; mean5=1.57 V and grad5=364 mV per khrs; mean6=1.61 V and 

grad6=675 mV per khrs; mean7=1.65 V with grad7=76 mV per khrs. 

Table IV.2 Ageing rates related to the measured datasets with their basis in hrs for EPFL data in SOEC mode. 

 

Figure IV.13 and Figure IV.14 show the ageing analysis regarding data from DTU and CEA, 

respectively. For the first case, the continuous galvanostatic operation in Figure IV.13 starts at 

around 200 hours and shows a stable phase until 375 hours. Afterwards, the experiment includes 

significant fluctuations. The trend regenerates and reaches at 500 hours the value from the 

beginning. After 600 hours, it starts to degrade more significant with comparable degradation rates, 

intermitted by phases of regeneration. At around 1150 hours, the degradation accelerates again and 

keeps its highest value until the end of the continuous galvanostatic operation. Table IV.3 shows the 

results for the DTU data. 
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Figure IV.13 Remaining useful lifetime estimations of “DTU_12test138_durability” dataset from DTU with ageing rates and 

voltages after significant changes of the state. 

Table IV.3 Ageing rates related to the measured datasets with their basis in hrs for DTU data in SOFC mode. 

 

Figure IV.14 Remaining useful lifetime estimations of “CEA_data collées 15min L717” dataset from CEA with ageing rates 

and voltages after incidents. 



   
 

40 
 

Figure IV.14 shows a kind of “formation phase” until 500 hours, which can be noticed by the 

prognosed trends despite that there is some regeneration with a follow up of high ageing rates at 

400 hours. The prognosed trends Prog5, Prog7 and Prog9 give good estimations for the followed 

trends Part11, Part12 and Part13. Part6 seems to run under very favourable conditions and Part10 

shows an adaptation of the voltage towards its stabilized state. Table IV.4 adds an interesting aspect 

to the analysis. Whenever the voltage decreases significant below its last stable value, the ageing 

rate increases significant to somehow come back to a former trend. The significant increased ageing 

rate causes a decreased remaining useful lifetime. Table IV.5 shows the results for SOFC mode. 

Table IV.4 Ageing rates related to the measured datasets with their basis in hrs for CEA data in SOEC mode. 

 

Table IV.5 Ageing rates related to the measured datasets with their basis in hrs for CEA data in SOFC mode. 

 

All the data seem to include an initial formation process when the continuous operation is started. 

After several 100 hours the effective degradation trends establish, which appears kind of similar in 

degradation rates and prognosing the future trends in an acceptable way. Even if some incidents 

cause fluctuations of the voltage trends, the experimental profiles tend to stabilize towards 

prognosed fits of the past. Understanding the reasons of the fluctuations, which displace the voltages 

in a positive or a negative way from the prognosed trends, could be helpful for improving the 

performance.  

To conclude, the proposed signal-based learning multiple model for cell prognosis was validated on 
different sets of data acquired during the project Ad Astra. In addition, some methods for full-
automated black box model approach were developed. The automated operation point detection, 
the online outlier treatment, the step detection and the stability detection are core elements to 
achieve this long-term goal. Thanks to the general approach, the algorithm can develop further on 
other data and other systems. One required step would be to combine all methods in one big 
algorithm, which could not be achieved yet. The methods are still applied in a sequential way. 
Another recommended action is the validation of the developed methods on other systems and data 
to ensure their robustness versus changing conditions of measurements and control systems. 
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